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NUMERICAL SOLUTION OF FLOOD PREDICTION AND

RIVER RLGULATION PROBLEMS

E. Tsaacson, J; Je Stoker, A. Troesch

Numerical Solution of Flood Problems in Simplified
Models of the Ohio River and the Junction of the
Shio and Mississippi Rivers. Conclusions Valuable
for the Actuval Cases.
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1. Purpcse of the present report and summary of its results.

In Report I a muthematical basis was laid for the
nuserical solution of flow problems in rivers. The ultimate
aim is to carry out numerically the solution of a flood problem
for the Chio River in a concrete case by using an approrriate
digital computer, tc compare the results with the observations,
and, in genereal, to study the feasiblility of such methods of
aﬁtacking this typerof problem; in addition, ine problem of
floods at the junction of the Ohio and the Mississippil, and
problems concerning the regulaticn of the Tennessee River
through controls at the Kentucky Dam are to be solved
numerically, In all of these cases it is necessary to make
use of a consideratle bulk of observational data--cross-
sections and slopes of the channels, measurements of river
derths and discharges as functions of time and distance down
the river, drainage areas, observed flows from tributarles,
ete.--in order to obtalin the information necessary to fix the
coefficlents of the differentlal equations derived in Revort T
and to fix the initlal and boundary conditions. This in itself

is a task with some complexities, and 1t also takes time and
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the cooperation of several groups of people. In the meantime,
therefore, it was thought wise to try ~ut the numerical methods
proposed 1ir. Report I on three problems which are simplified

versions of actual problems, and to carry out the solutions

by using or ’'~a:y hand calculators. The present Report II

haa»as i1ts purpose the presentation of the solutiocns in these

speclal cases, together with an analysls of their bearing on

the concrete problems for actual rivers,

The models chosen correspond in a rough general way

(a) to two types of flow for the Ohio and (b) to the Ohio and

Mississiprl at their junction. Rivers of constant slope, with

rectangular cross-sections having a uniform breadth and

roughness coefficient are assumed. In this way differentical
equations with constant coefficients result. The values of
these quantities are, however, taken to correspond in order of
magnitude with those for the actual rivers, In the model of
the Ohlo, for example, the slope of the channel was assumed

to be 0.5 ft./mile, the guantity n (the roughness coefficient in
Manning's forrmla) was given the value 0.03, and the breadth
of the river was taken as 1000 feet. (These values were
recommended tb us by the engineers on the basis of their
knowledge of the Ohio.) It was assumed that a steady uniform
flow with a depth of 20 ft. existed at the initlal instant

t = 0, and that for t > 0 the depth of the water was increased
at the point x = 0 irom 20 ft. to 4O ft. within L hours and
then held fixed at the latter value. The problem was to
determine the flow downstream, i.e. the depth y and flow

velocity v as functions of x (for x>0) and t. The resulting

[ e oo o+ O = T g - © e - - e &
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stage and discharge profiles are given for several times in
Figures 1 and 2. In a similar fashion he model for the
junction of the Ohio and Mississippi was set up. (iFigures
and 5 displey the stage and discharge profiles for various
times.) | " |

Much valuable information and insight was'gained from
the stu&y of these models, especially from the model of the
Ohio. This will be discussed in detail later on, but a number
of observations might be made at this poinf. In the first
place, the fact that the solution of the simplified flood
problem in the Ohio could be carried out numerically bty hand
computation over a considerable range of values of the
distance and time (values at 900 net points in the x,t-plane
were determined by finite differences) shows that the problems
are well within the capacity of modern calculating equipment.
It mipht be added that the special case chosen for a flood
in the Ohio was one in which the rate of rise at the starting
point upstream was extremely high (5 feet per hour, iﬁ
comparison with the rate of rise during the big flood ef
1945 which was naver larger than 0.7 {eet rer hour at
Wheeling, West Virginia), so that a rather severe test of
the finite difference method was made, iIn view of the rapild
changes of the basic quantitles in space and time.

The decisive point in estimating the magnitude of the
computational work in using finite differences is the number
of net points needed, and our model indicates that an interval

/A\x not smaller than 10 miles along tho river and an interval
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Z&t; not less than 0.3 haurs in time in a rectangular net in

. the x,t- plane will yield results that are sui flciently

accurate. (Of course, the actual problems for the Ohio will

involve'empiricalzcoefficients in the differential equations
~ and other empirical data, which will have to be coded for

1ca1culatiﬂp machiﬁéé, but this will have no‘great‘effect on

tﬁene estimates for /A x and might under extreme flood condi-
tions reduce'[kt by a factor of .5.) 1In our model calculaf
tions we used a uniiorm space interval /\x , along the river's
lengﬁh, but'wekare investigating the feasibllity of using the
location of the gaging stations as net pointe. In our model
caleulations, we experiment with various finite difference
methéds,‘interval‘sizes and analytic:approximations in order
to get the vractical experience necessary to select the
technique to be used for antomatic machine computation. Ve
plan to use our ideas Iin some trial desk calculations made with
the physical data for the Ohio and the 1945 flood (the basic
data have been provided by the Corps of Ingineers and is now
being reduced at Wew York Universalty to a form sultable for
somputation).

4 second computation% for the Ohio model was performed
for a steady prougressing wave (L0 ft. stage upstream and 20 I%.
stage downstream). Thls work indicated that an interval’[&k
of 10 miles yielded‘a~stage prediction accurate to witiiin 0.6

per cent in & 7 hour forecast.

Y
»

B prov - - with & check on the accuracy of our
computatic. .. ..athoda;, In a vrodblem which cculd be solved
analytically (see sec. 2.4 and spn., 7I).

L > o AR A AR b 4 e O . e e e TR v —— - .. S R




5.

As a model va the problem of caléulatihg what happens
at the junction of two majﬁr'streams,,we worked with three
separate river etretchés (e.g. the Chio, the upstream side of
the MiésisSippi, the downstrgam side of the Mississlppi). 'or

each region the samerfipite diffefence scheme was used as in
‘the model of the Ohio. In addition, it was necessary to -
determine the values of stage and discharge at the common
junction point from the knowledge that the levels of the three
branches agree there and that the water which flows into the
junction elso flows out.

A much better understanding was gained from the calcula-
tions for the model of the Ohio of the relation between the
methods used by the engineers jin the Chio River Division in
Cineinnati (and other engineers as well) for_predicting flood
stages, and the methods explalined in Rebéﬁt i,'which‘make use
of the basic differential equations. At first sight the two
me thods secm to have very little in common, though both, in
the last analysis, must be based on the laws of conservation

.fof mass and momentum; indeed, in ore important respect they
aven seem to be somewhat contradictory. The methods used in
enginecring practica (which make nc direct use of any
differential equations) tacltly asswre tha£ & lood wave in a
long rivervsuch as tne Ohio propag&teslbnly in th¢ downstream
direction, while the basic thecr& of thQ d1rfar§nt1a1 ecuations
we use (ac was sxplained in Hepo~t [) tells us that a
dlsturbance at any point in a river f{lowing ct sub-critical

spesd (the normal case in general and always the case ior the

O . - . . . [N




Ohio) will propagate as a wave traveling upstream as well as
downstream. Not only that, the speed of propagation relative

to tﬁe flowing stream, &s defined by the differential equations,
1s Jg§F for small disturbances and this 1s very much larger
than the péopagation apeed obtained by the engineers for their
floed”wave traveling downstream. There 1s, however, no real
disgrepancy. The method used by the engineers can be

intorpreted as & method which yields solutions of the

differential equations, with certain terms neglected, that are

good approximations (though not under all circumstances, it
seems) to the actual sclutions in some cases, among them that
of flocd waves in a river such as the Chio. The neglect of
terms in the differential aquationé in this approximate thecry
i{s so drastic as to make'the theory of characteristics, from
which the properties of'the solutions of the differential
equations were derived in'ﬁeport I, no longer available. The
numerical solution presented here of the differential equations
for a flood wave in a model of the Ohio ylelds as we have
sald, a wave the front ofkwﬁiéh travels downstream at the

speed JRY, but the amplitude of this forerunner 1a cuite small,
while the portion of the wave with an amplitude in the range

af practical interest is found by thie method to travel with
esgential ly the same speed as wéuld be detoermined by tlie-
enzinecr's annroximate method. '“hat seems to happen i3 tho

following: small rorerunneré of' a disturbance travel with the

¢ e mas | et e e - L e o — e e




apeed JE? ’ relative to the flowing stream, btut the friction
férces act in such a way as to decrease the speéd of the main
portion of the disturbance far below the values given by,[ET,
1.0, to a value corresponding vouphly to the speed of a steady

']

3
prozressing wave " that travels urchanged in form. (One coula

also interpret the engineering method as one based on the
assumption that the waves encountered in practice differ but
little from steady progressing waves.)

This analysis of the relation between the methods
proposed in Report I and those commonly used in engineering
practice indicates why it may be that'the latter methods,
while they furnish goed results in the most important’cases,
fail tc mirror the observed occurrences in other cases. For
example, the oroblem of what happens at a muajor ju-ction, and
various probliems arising in conmnection with the operation of
such a dam a8 the Xentucky Dam in the Tennessee Rive: seem to
be cases in which the englneering methods do not work well.
™ese are, in all likelihood, cases in‘which the motions of
- intarest depart toc much from those of steady progressing waves,
snd cases in wnizh the propagation of wavee upstream is as vital

as the propugatior downstream, “hus at a major junction it ia

As can be seen from lepourt I, the propagation speed, Jiy,
which {s determinec witaout reference to the friction term,
would not bs affected by any change in the order of magnitudo
of the friction forae,

234

A steady progressing wave i a llow in whiech the depth und
diacharge are functions only of (x -Ut), with U & constunt
veloclty. The propagation sneed ' 13 deternined from tie
friction term (see zec. 2.4}.
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clear that considerable effects on the upstreaa side of a main
stream are to be exvected when a large flow from a tributary
occurs. Tn the same way, a dam in a stream {or any obstruction,
or change ir: cross-section, etc.) causes reflection of waves
upstream,~and neglect of such reflections might well cause
sericus errors on some occasions. On the other nand, the
rethod of numerical soluticn based directly on the differential
equations is appiicable in any of these cases, and it seems

reasonable, as we propose doing, to test it out as a practical

-method.

“he above general description ¢f what hapvens when z
flood wave starts down a long stream--in particular, tiat it
"has a lengthy front porticn whish travels fast, but has a small

emplitude, while the main part of the disturbance moves much

-more slowly--has an important bearing on the question of the

proper‘approach to the numerical solution by finite differences.
it is, as wé shall see shortly; necessary‘to calculate--or else
estimate in gome way--the motion up to the front of the
disturbance in order to.be in a position to calculate it at the
rlaces and times where the disturbances are large enough tc be
of practieal interest, This means that a large number of net
points in thé finite difference mesh in the x,t-plane 1lie in
reglions where the solution is not of great interest. Since the
fixing of the solution in these regions costs as much effort as
for the regions of preater interest, the cifferential equation
method 1s at a certaln disadvantage by comparison with the

conventional method in such & case. However, it is possible to

PSSP T R T T e —- Ran et e e ) A e
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determine analytically the chzracter of the front of the wave
and thus estimate accurately the places and times at which the
wave amniitude is so small as to be negligible; these regions
can then be regarded as belonging to the regions of the x,t-
plane vhere the flow is undisturbed, with a corresponding
reduction in the number of net points at which the solutioms
must be calculated. - A method which can be used for this
purpose has been devised by G. Whitham and A. Troesch, and a
descriptién of it is given in Appendix I of this report. 1if a
modern high speed digital computer were to be used, howe#er, it
would not matter very much whether the extra net points in the
front portion of the wave were to ve included or not: many
such machines have amvle cavacity to carry out the necessary
calculations.

Tn sec. 2 a descri?tion of the calculations made for the
model of the Chio is given, including a discussion of various
difficulties waich occurred for the fiood wave problem near
the front of the disturbance, and particularly at the beginning
of the wave motion (i.6¢. near x = 0, t = 0), and an enumeration
of the features of the caiculation which are certain to play s
simllar role in the nore complicated case of the Ohio as it
really is. 1In sec. 3 we give a description of the method used
and the calculations made for a model of a flood coming down
the Ohio and its effect on passing into the Mississippi. In
Apprendix I, as was noted above, the method of G. Whitham and
A,Troesch for dealing with the front porticn of a wave traveling

down a river ls described. In Appendix II, a discussion of
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steady flows and of steady progressing waves is given. These
flows were used to determine convenient initial conditions, to
test our comrcuting procedures and to furnish the asymptotic
behavior [for large time) of the flows.

Furthermore, in order to understand more fully the
general behavior of flood waves in open channels and especially
why the speed [gy is not the observed propagation velocity for
normal fl>od problems, some theoretical investigations* using
the concepts of steady and steedy progressing flow were carried
out by G. Morikawa, A. Troesch, and G. Whitham and will be
reported on later. Thelr conclusions‘also have important

bearing on the practicability of making flood forecessts for

extended pericds cf time, from the given data.

2. WModel of the Ohio.

2.1 TFormulation of the flood problem. We consider a simple

model which approximates the average characteristics of the
Ohio River. The river was assumed to have a rectangular cross
section 1000 ft. in width. The slope S of the river Yottom
was taken as .5 ft./mile and Manning's formula was used for the

fricticn slope Sf,

* Tese are related to, and extend, the work of

Hayashi, T., Mathematical theory of flood waves.  Proc. of the
lst. Japan Nattl, Cong. for Appl. Mech.,l?Sl.

Teymie, Fh., Propegation d'une intumescence allongée (probléme
aval). Int. Cong. for Appl. Mech.,5th, Proceedings,
Sept. 1938, N. Y., Yiley, 1939. '

e agmors g A - 1A g A T . - s T e A et p—————— sr ey FALS 1




11.

{sir:ce the hydraulic radius R for a rectangular channel of

width B and water of depth y is

R i DI

1+ ==
The choice
2/3
1.4G.2 \ ('t -
.._( ’:’9) _5500;&__)_.2_ ’
(sec)

where Manning's n¥ .03, was suggested by the engineers. The
¢ifferential equations are taken in the form (see p. 1L,

Report I, eg. (3.6))

wnere

1
{

= -g3+gSp , V= velocity, y = depth of water ,

c = Jgy (the propagation speed of small disturbances) .

In carrying out the computation it was found convenient to use
the mile as unit of length and the hour as unit of time.

The physical problem considernd wez the I'ollowing: at
time t = ¢, steady flow of depth 20 ft., ls assumed. At the
"head", x = 9, of the river, we impose a linear increase of

depth which brings the level to 4O ft. in U hours. We then
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maintain the level of LG ft. at x = 0. The initial velocity of
the water corresponding to a uniform flow of depth Yo = 20 ft.

is calculated from Sf = S to be

Vo = 2.38 mph H

the propagation speed of small disturbances corresponding to

the depth of 20 ft. is
Cy = [gyo = 17.3 mph .

The problem then is to determine the solution v(i,t), c(x,t)
for all later time, t > 0, along the river, x > 0. Figures 1
and 2 present the result of the computation in the form of stage
and discharge curves plotted a&s functions of distance along the
river at various times. As stated above, we worked with

the mile as the unit of length, and the hour as the unit of
time. Our stage measurements were then converted into the
customary unit, the foot,and the discharge into cubic feet

rer second.

2.2 Computational techniques. Tn order to indicate how

the solution was calculated it is convenient to refer to a

diagram in the (x,t) plane (also see Figure 3).

L g R e A . g = i - - v q—————— . e et o g o . \
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hourna /

Diagram 1

Regions in which various computational methods were tried

According to the theory pfesented in Report I, we know that

for x > (V)i-co)t = 19.7 t, called regsion 0, the solution is

(

given by the unchanged initial data, v(x,t) = Vs e(x,t) = o

(since the Torerunner of the disturbance travels at the speed

vo+-co = 19.7 mph).

In orcder tc compute the solution by finite difference

methods, we found it necessary to use rather small intervals

‘near the origin, This is to be expected since the values of

¢y were changed discontinuously at t = 0, x = 0. We
experimented with various interval sizes and finite difference
schemes in order to determine the least time consuming way to
calculate the progress of tie flood. Our conclusions have
been summarized in the introduction to this report. Ve shall
now describe the varlous schemes and the regions in which they

were used (see Diagram 1 and Figure 3).
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Region I, 0 <x <19.7t, 0 <t < .4. Intervals Ax= 1 mile
and Zkt = .043 hour were required owing to the sudden increase
of depth at x = 0, t = 0, The finite difference formulae
derived in Rejort I, egs. (4.8}, (14.9) were used:
vV, =V 4-é§2 (ey * v, )( Tyt e - ¢c,)
. P M A" Z L 2 L M

- (e -v‘\(lv iy e +c,) - AXE '

MT M2 M Z RTSMT R M|’

(2.2) | |

1 At

- 1
cP--cM ---—-A l(cMJrvM (EVL-EVM+cL-cM)

- -17-" - A
+* oy =Vl 5 V=5 g -oy *CR'] .

where P refers to a point Z&t later than M, while L and R are
/A x units to the left and right of M respectively.

Diagram 2

Net points used in rectangular acheme

(We have adopted the convention of using Vi to denote the value

of the function v at the point M,)

sy e = re—— -y, -_— —— e LR " R
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In Region II, 0 = x < 19.7 t, 4 <t < .7, with Ax =1 nmiile,
£&1;= .OZ&, we experimented with a different finite diffevence

scheme, called a "staggered" scheme. This method is
appropriate for use when the space intervals are uniform in
size along the length of the'rivcr, The scheme is described

in Report I, eq. (l'.1ly) and eliminates any reference to values

at the point M.

e ' o P

Diagram 3

Net points used in “staggered" scheme

A\t

= —————— - { - - t 2,
Vp VM*+[_§x[2(°L o) Chg * {Vp, VR ) Vg AXEM”‘]

(2.3)

|

[
D.
ct

where

1 -1 = X5 41
Ty = 3Vt vR) s oye T Flegreg) b By = (B4R

We must pay a slight penalty for uvsing this somewhat
simpler formula. That is, we find that in order to calculate
the value of v(0,t), the velocity at the head of the river, we

must introduce some additional consideration. We refer to
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t
P
M * R
1w X ' ’
- B G H
B ma s . .__._._...__..-> X
Diagram L

- Net point arrangement ﬁsed~at-boundary in "stapggered" scheme

Diagram l., where we indicate schematically the staggered net
points P, R, F, G and H. It is clear that equations (2.3)k
together with the prescfibed'Values of ¢(0,%t) do not‘prodﬁce a
- fofmula for v, in terms of gquantities e§aiuated at the
preceding staggered points R, F, G, H} étc. e can overcome

tnis dlfflculty by determining values for v by linear

B’ B
1nterpolat10n frem the values at the points Fanud G (or if
rapid changes are made in the boundary values, we may use

quadratic interpolation on the vaiues at the three points

¢. in

F, G, H). That is, we.use such determined values of Vs 3

-

For linear interpclation

, \ '_1' '
vy = E(VF+-VG, , cp = Z(CF*'CG) .

Wik

For quadratic interpclation

(3cF4-6cG.-cH)/8 , V. = (3vF+-6vG 'VH)/B ,

°g B

we used these formulae to smooth the data near the boundary
when we changed intarval sizos,

o AR ——, B " R S a2 - .. S ———" O e - . iy e t ¥
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the difference equation (2.2) to determine the value of v,.
We then use {2.2) again to determine v,. The necessity for
,uéihg a different formula to-calculate at boundary points

N would édd some difficuliy to a scheme for automatic computation.

Region TII, 0 < x < 5 miles, 7 < t < 1.25 hr, with |
A x =1mile, Zkt:z .24 hr., We used the same formulae as in
| Région II (except for points on the boundary between Regions

IIT and IV; see below),

‘Region IV, 5<x<19.7¢, .75t <'1.25, with Ax= 2 miles,
[&t; = .048 hr. The values at the boundary between Reglons
III and TV were obtained by linear interpolation from the
neighboring values. Other gquantities were computed by the

"staggered" scheme as in Regions TT and TII.

Region V, 0 < x < Vt, 1.25 <t < 10 hrs, Ax = 5 miles,
[&t = 17 hr. V rerresents a variable speed which marks the
downstream end of the observable disturbance (V £ 10). fThat is,

by using an expansion scheme (see Aprendix I) we determined a

Region VI, Vt < x < 19.7 t, about the forerunner of the
disturbance, in which the flow is practically urndisturbed to
the accuracy we were interested in. VWe therefore used this
expansion to calculate the various quantities in Region VI
and used the staggered scheme to compute tne valuee in
Region V. Ve permitted Regions V and VI to overlap slightly,
in order that (a) we should avoid having to interpolate for

boundary values and (b) that we might have a check on the

conslstency cof the two methods of computation.
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2.3 Observations. The conclusions reached on the basis

of these calculations of a flood in the Ohio can be summarized

[ ~ as f

(a)

(b)

(e)

e e s A Mt e ettt e

ollows:
The model flood, with a 5 foot per hour rise, is extreme

even in comparison with the’l9u5‘f160d for which the rate

of rise at'Wheeling,’West Virginie was less than .7 foct

per hour. Such a case exaggerates the way in which our
‘finite difference methods propagate small errors. For
example, we found slight inaccuracies developing at the
head, x = 0, when we increased the A\ x interval size.

We could nave devised special techniques to smooth this

~effect--but we didn't in qrﬂegjthat we could better

observe how the errors were propagated.

In spite of the exceptionally high rate of rise, the
inaccuracies created by using cur finite difference
methods were damved out rather strongly (in about

8-10 time steps.!. It is possible to control these
inaccuracies by using apyropriate smoothing techniques

or more simply by using small interval sizes.

The process by which the small errors of the finite
difference scheme die out may be described as follows:

A large~ value of v prcduces a larger friction force
vhich alows cdowr tha metion and produces at tho nuat time
a smaller velcoclity. The lower veloclity in a similar way
then opera%es through the resistance to create a larpgor

velocity and the proceas repeats with a steady decrease

in the amplitude of varlatiocn,




(f)

(g)

st —————b:
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Je checked the accuracy of our computation (as a function
of the interval size) by repeating the calc+lation for
various interval sizes over the same region in space and
time. Such self-checking by changing intervals can be

coded into an automatic prccedure for computation.

The "stapggered" scheme introduced additional difficulties
for the computation of boundary values {(in contrast with
the rectangular schemes). This trouble was emphasized

in the computation at the boundary of Regions III and IV
(smaller A x intervals were used in Region III). Our
plan to use the stage gaging stations as net points wouild
be simpler to code with a rectangula: scheme; and would

not require any special ireatment at the boundaries.

We have yet to investigate tihe possibility of using
"implicit" finite difference methods--which may permit

the use of larger time steps--at the axtra cost of using
more complicated procedures to sclve the equations at each

time step.

The linsarized theory, obtained for a small perturbaticn
about the uniform flow with 20 ft, depth, did not give

an accurate descrintion of the solution of cur problem.

e compared the stage rrofilys nredlcted by the linear
theory and thdsé calculated from the non-linear equatli.ns.
After a 96?106 of loss than 2 hours, there was & deviation
of 2 feet. The linear therry predicted smaller values

for stage and discharge.
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It would be convenient to be able to obtain in advance
e safe estimate for the maximum value of the particle

velocity, in order to select an appropriate safe value

Ax

for At, since we must have At < =22

(see Report I,
p. 26). Our calculations indicate that this may not
be too simple theoretically, for the maximum velocity

at x = 0 greatly exceeds its asymptotic value.

v{(0,%)
A mph
H
5l N
l , ™.
l s \’\\""“"“--. + m—— et e st ot e e o s
L/
3.7 ;.» ¥ - — e e e e e e o e
|

. velocity for 110 ft.
o.ué; steady 1low
z

— : =- t hours

I

Diagram 5

YWater velocity obtalned at "head" of
river throush repulation of stage

But, it may well be possible, on the basis of empirical
observations, to obtain adecuate estimates of the maximum
velocity. As was indicated earlier, we can easlily ccilo
tl.e calculation of the proper iInterval slze as a part

of the computation should other means of deterrination

be inadequate.

e eyt o ot e e s e
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e note that the curves of constant stage have clopes
" which are closer to S mph (the speed with wnich a steady
rrogressing flow, 40 ft. upstream and 20 ft. downstream,
movee, see next section) than to the over 19 mph speed

of propagation of small disturbances.

b £ hours , reslon of
/ rnractically
. , L s undisturbed
/ / , - ! flow of 2¢' .-

; B . -

g 5 mrh-~slope 19.7 mph-slope

el 19.7 =VO+’gyO

booll . — - ————d e

! ¢ 110G x miles

Diagram 6

Curves of cornstant stace--comparison with first

characteristic and steady progressing {low velocity

The rerion of vractlcally undisturbed flow (determined
by expansion about the "first" characteristic x = 19.7 t,
seo Appendix T} 1s shown above. 1In practice, we expect
the local runof'f discharges and the non-unitorm flow
conditions to eliminate the reglion of practically
undlsturbed flow. Tor this reason, in general, we can
not use analytic expansion scheriies to trr to save

computaticnal labor of this kind.

i o
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Figure I

Stage profiles for a flood in the Ohio River
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2.4 Tetermination of accuracy o. finlte difference method

by comparison with an exact solution. There is a case in

which an exact solution of the differential equations is
known, i.,e. the case of a steady progressing wave* with two
different depths at great distances upstream and downstream.
This exact solution for the case of a wave of depth 20 ft.

far downstream and LO ft. far upstream was taken as furnishing

the initizl conditions at t+ = QO for & wave motion in the

river. "With the initial conditions prescribed in this way
the finite difference method was used to determine the motion
at later times; of course the calculation, if accurate, should
furnish a wave profile and velocity distribution which is the
same at time t as at the initial instant t = 0 except taat
all cuantities are displaced downstream a distance Ut, with

U the speed of the steady progressing wave. In this way an
opportunity arises to compare the approximate solution with
an exact solution. 1In the presert case the phase velocity U
1s avproximately 5 mph. Ue considered sn interval size of
Ax =10 miles in a "staggered" scheme with At = 34 hr.
After 7 hours, the cnlculated stage values ugreed to within

.6 per cent with the exact values. The discharse and the
velocity deviated by less than 2.7 per cent from the exact

value. The fact that stage values can be predicted more

o1
-

" n Appendix II we derive the formulae whlich describe the
steady progressing wave.

e - I —————— o A——
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accurately than discharge values is a characteristic of the
presently used finite difference methods that was observed

in all calculations.

} v feet
LI.OJ - e
20t v PR
. o - - T e S ——- —— fand ——— A Sty v ety - = haind e r— "" K
t.-....._ P P
p v mph 1G0 miles
3.7 LI
2.)4. 2- P
S S U - e B %
' Diagram 7

Steady progressing flow--stapge and velocity profiles

3. The junction of the Ohio and the Mississippi

3.1 Formulation of the junction problem. Our nodel for the

junction of the Chio and Mississipuvi Rivers was constructed

to test our finite difference methods with regard to their
applicability in such cases. Ve believe that the consideration
of the actual problem, as it occurs in nature, would present

no new difficulties in principle (except for the consideration
of overbanit flow)., Ve supposed the upstream Mississippi
section to be identical with the Ohio River--rectangular cross-
section, 1000 ft. wide, slope of .5 ft./nile, Wanning's n=,03,
infinite in length. We imagined the downstream Mississippt

branch to be rectangvlar, twice as wide, i.e. 2000 rt.,
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Mannine's n=.03, and o slightly smaller slope .L9 ft./mile.
The latter modification of the slope was made in order to
obtain an initial solution corresponding to a uniform flow of
20 ft. depth in all three branches (such a change is necessary
to overcome the decrease in wetted perimetef which occurs on

going downstream through the junction).

\ e /11
. \ :
"pstream Chio /
.Mississipp% i
- \ /
/
\ /
\ :
\ ! \ .-/
\ \ ;
\ ; :
L1000t e 10007 =)
'! (3] !
‘ !
: Cownstreanm

Mississippi

Diagram 8

Scinematiec rplan of junction

We considered the problem of startine a lood wave in the
Ohio, in fact, the same [lood we had computed earlier. The
difference was that we began the Ohio flood 50 miles upstream
from the junction. After about 2.5 hours the forerunners of

the Ohio cdisturbance reached the junction. They then

separated into two wavelets, one golng upstresm and the other
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downstream on the Mississippl. 1In addition, at the same
instant, a reflected wavelet startcd packuwards up the Ohio.
Our finite difference calculations were begun in all three
oranches {rom the moment that the junction was reached by

the forerunner of the Ohio flood, (e saved the labor of

" recomputing the motion for the first 2.5 hours in the Ohio,

since the motion was identical with the one praviously
calculated.) The flow was followed for 10 hours and the
results are indicated in the stage and discharge plots as

a funetion of distance (for various times) given in Figures

4 and 5.

3.2 Description of the computatlonal procedures. Let

v[l]’ °[1]’ v[2], 9[2], v[3], 0[3} represent the velocity v
and propagation speed ¢ for the Ohio, upstream Mississippi,
and downstream Mississippi, respectively. A "staggered"
scheme was used with interval Zl:c = 5 miles and Zkt = .17 hr.
as indicated in Diagram 9. The junction point 1s denoted by
x = 0, the region of the Ohio and the upstream Mississgippi
are represented by x < 0, while the downstream Mississippil
is given on x > 0. The time t = 2.5 hr. corresponds to the

instant that the forerunner of the flood reaches the junction.

" . g W e TR Abpenm e S e o . —— . —— . gy o .
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J K A F B G H
Ohiec [1] Downstream Mississippi ‘[3}

Upstream Mississippi (2] sunction

Diagram 9

Junction net point scheme

The values of the guantities v and c at the junction

were determined as follows: Let us assume that the values

of v and ¢ have been obtalned at all net points for times

preceding that of the boundary net polnt F.

the junction

e know that at

(since ¢ = gy <nd the three branches are level at the

junction) and

Yra)viay * Y21vie) T AViavia)

e




30.

(since what flows into the junction from the upstream
Misaiseippi and the Ohio must flow out of the junction into
the downstream Mississippl). If the values of v and ¢ were
known at M in the respective branches of the rivers, we could
find the values at P from the following three equations:
"Revort I, eq. (L4.6) for the Ohio and upstream Mississippi,
and Report I, eq. (L.7) for the downstream Mississippi. We

rewrite all of the equations for convenience

°P1) < Cplz) T Cpryy  (Wita o = V&)

Vpr1] * Vpra] ¥ @Vp(a] (sinee ¥ryy = ¥ip) = ¥(3))
c -c (c -c )
P(1] MI1] M{1] L{1]

’ v -v v -v
P[1] ~ YM[1] ( M{1] ~VLI1] .
- Y, ) E . - C’
*{ N * (Cyray ¥ Vi) N )} T EMi1)

°pre) ~ Surey , (eyr2y = Cp12y)
(c + v, )
At M2y " Ymr2) Ax |

(3.1[ 2

)
2]’

-

l'v -v v -V
| Y-12) " Yu(2) Miel _tlel)y . :
+ * ‘°r~z[21*"m21’( | )} BLCE

L At Ax

and

| 'GPIXL: Cv(3) Cor3) ” SNy
(1.2f1)) '2{ - ‘stt + (VM{3)‘C-{3}) AK

Voray =V v -v
P13] " VN3] . e(3) “Ymi) b,
‘{ At RS TR T Ax } "




The above system of six eonations determines uniquely the
values v[l], cfll’ V[Z]' c[g]. v{3], 0,3] £t T in terms of
the!r values at the preceding noints I, " and ¥, The equations
can be solved exrlisitly. On the cther hand, the valueg at [
are determined in the same way from the preceding values at

A, F and B. The values at A and B are determined by lineer”
interpolation hetween the nelzhboring veints (X,F) and (P.G)

respectively (see Diagram 7).

3.2 Cbsgervations.

(a) e find that the flow tends to a steady state in which
the downstream “ississippil has uniform flow, as indicated

below (see Appendix TI).

1y feet
§

i
e e e e v Comew oz sttt ’LU

Ohfo" o~

————— oy —
- ——

Downstream Mississinpi

{

Jostream '

Mississippi - ;
N - I T, . e e - “ 20

!

!

|

|
e e e b

Junetion

.A‘., A . - - x
50 1.0 miles

™lagram 10

Laymntotic {low in fnunetion rroblem

———— ———— - . o o

~uadratic interrolition using (F,G,H) and (J,5,F) was used
alter the rtage increasocd anprsclably at the junction.
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(b) The existence of hoth an up-and downstream branch of the
river into which the Chio discharges has thie effect of
lowering the Ohio River level. A crude estimate of what
would happen should the Ohio discharge only into the
downstream branch of the Mississipri, indicates a rise
of about 5 per cent in the level of the Ohio at the
junction.

(¢) There 1is a definite influence on the ﬁpstream branch of
the Mississippi (see Flgures || and 5) and it is in this
connection that the finite difference methods display
their advantage over the standard flood routing
procedures. For example, at a point 50 miles upstream in
the MYMississiopi the stage is increased by 1 ft. as a
result of the pouring of the Ohio River flood into the
junction,

(d) Wve found it convenient to compute the flow in the
neighborhood of the flood forerunners in the two branches
of the Mississipol by means of the expansion scheme
mentioned earlier and described in detail in Appendix I.

(e) The damping of small errors and other features psculiar
to these equations are the same in the present case as
in the preceding case of the Chio; they arc described in
section 2.3 (in connection with the OChio River model

flcod calculation),




Appendix I

Expansion in the neighborhood of the first characteristic.

It has been mentioned already that, whereas the first
signal of a disturbsnce initiated at a certain point in a
river with uniform flow travels downstrsam with the speed
v + [gy, the main part of the flood wave travels more slowly
(cf. Deymié%), depending strongly on the resistance of the
river bed. An investigation of the motion near the head of
the wave, 1.e. near the first characteristic with the equation

X = t(vo-+c ), shows immedlately why the main part of the

e}
disturbance will in general, but not always, fall back behind
'the forerunner.

Tne motion is investigated in this Apmendix by means
of an expénsion of G. Yhitham and A. Tfoesch and is carried
out to the tﬁo first orders for the model of the Chio River,
and to the lowes* order in the much more complicated case
of the junction problem. The‘results obtained enable us to
improve the accuracy of the solution nesar the firct
characteristic. It turns out that the finite difference
scheme ylelds river depths which are tou big (see below),
owing to the fact that our larme mesh width smoothed the

river profile out.

¥ S

Deymié, Ph. Prcpagation d'une intumescence allongee (problémo
aval). Tnt. Cong. for Aprl. i‘ech., 5th, lroceedinrs,
Sept. 1938, M, Y., "ilay, 193y.
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15
"N profile computed hy
~ N, “Tinite differences
\\\ \<
~— .~ s actual profile
y . ‘\\. \\ \~
0 -~ -.,\-. N ! ‘\\\
.\'ﬂ'\\\
T
el ,
Region‘\t?‘ﬁf
of undisturbed

uniform flow

Diagram 11 Ol <

Error introduced by finite difference scheme

in neighborhood of first characteristic of a

rapidly rising flood wave

In order to expand the solution in the neighborhood of

the wave front, we introduce new coordinates

F=x and %= (vo+co)t -X

such that the F-axis (i.e. €T = 0) coincides with the first
characterlistic. The basic system of equations (£.1) are

restated for convenience

'_ + ) + had ﬂ.‘u, + ”.q = 0
eccx Ve YV ~5 7S p R

(A.1)

il
<

+ +2
eV, +eve, +2¢,

Upon substitution of the new variables £ and ! we find

v — ———- - S - St e v v ——— - -— e
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ec(cg-cr)+v(vg-vt)+ (Vo+°o)v~c'gs+gsf=0 ’

- { - 2 =
2V(°&_j cz) +c\v€ Vz)+"(vo+°o)ct 0 ,

where the frictlon slope Spfor a rectangular channel of width

B is given by

vl ot/ [ oL/
Sf= \Ll_/ e VIVI{-z-Fé-;i .
Y("zg‘) 3‘ . E
»1+-?¥

Ve expand v and ¢ as power series in ¥ with coefficlentz 1hat

are functions of £ as follows:

_ Y- 2
vE v kv e+ v (E)TT e,

This expansion is to be used for «- O only, since for T< O
we are in the undisturbed region and all functions
vl(E),vz(g),..., cl(g),ca(ﬁ),... vanish identically. If we
insert the series for v and ¢ into equations (A.l) and collect
terms of the same order in Y, we get cordinary differential

equations for vl(E), cl(F),... for example

de 1

o

) ‘-. 1- 2»’,0“ }_-2. 1 ('-"-'

MO Shb Rl g e
3 ]..'.--~—L

gB
Although the solution of this diffeirrntlal equatlion for ¢, (.)

is casily obtained, the result exrTressed in general terms

looks so complicated that we prefer to glve it only for the
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cagse of the Ohio River under the conditions discussed in

o.luég)-l

section 2: ¢y = (1.05 +3.06 e ; In niles and hours.

This result has the following physical meaning; The angle a

by \

Yo e .. Wave front
- .}./‘ '-.\.._\ ’.
SN
'.):.. ~——
Ty~ —nd Ny
"'37f7ﬁ77~ undisturbed e
’777rr _ water surface
' T / 7‘1'7~‘.
T 7y~
e
’ ’- »» -77‘ -
PR X
Diagram 12

ot the proflles measured between the wave front and the

undisturbed water surface is shown to diz out exponentially

1
aaw.I:T;;EE , with a and b constants devznding on the river

and the boundary condition at x = C. Theoretieally, a could
also increase exnonantiallv downstream so that a bere would
eventually develop, but only if the lncrecse in level at z = -
1s extremely fast; In our example (sec. 2.1) no bore will
develop unless tlhie water rises at a rate of at least 1 ft.
per minute.

Unfortunately, the evaluatlon of cZ(E) which yields
the curvature of the profile at the wave front is ulready
very cumbersome. The curvature i found to decrease or

bx

large x like xe , b being a positive constant. '“ith the

two highest order terms in the expansion known, we were abie
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to estinate the region

.t hours adjacent to the first
i /32533‘ chsracteristic where the
10 4 / flow 1s practically
i A<;3;2>// undi sturbed. It is
5‘ //iﬁ‘tw romarkable how far behind
1 i d x=19.7
; e the theoreticul forerunner
~-;ff:"+w--+~-»~+~~-~-»-x the first measurable
50 100 159 miles signal travels, see
Diagram 13 Diagram 13.
Region of practically Tn a similar way, an

undisturbed flow exransion as a power series

in 7 has been carried cut
for the junction of the Chio and Mississipri, as deseribed in
section 3. Here even the lowest order term required a
comnlicated comnutation, since we had to work simultaneously
in three different x,t-planes, with boundary conditions at

the Junction. ihe differential equations Tor ¢, are, in all

1l
three hranches, of the same type as for the Ohio, and thelr

solution for the junction problem as treated in section 3 are

L0n08L e.lh5€ “or the Mississipril upstrean,

i

1

9 -:2
¢ LOOOBY e 29€ for the Mississippil downstream, tn milces

1l
and hours. This means that tho anple o dies out exponentiully

again in the " !issiasinpi, a little faster “downstream than
upstream, as could bo exrected, since tnc oncoming water in

the upstream branch makes the wave front steeper.
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In the problem of the idealized Ohio River and of the
junction the expansions were carried out numerically in
full detail and were used to avoid computation by finite
differences in a regicn of praetically undisturbed flow.%
At the same time the accuracy in the region of small

disturbance was improved in general (as indicated above) .,

-
“his would hecome more ané more {importarnt If the flcw
were to bs computed beyond 10 hours, \
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Appendix II

Steady flows and steady progressing waves.

II.1 Steady flows. 'e define a steady flow to be one for

which the velocity v and depth y (or, equivalently the
propagation sveed ¢ = J/py ) are independent of the time, that
is, v, = Yy = Os It follows from the equaticn of continuity
(see eq. (3.1) in Report I),

Vi vy, * YV, = c
that for steady flow
(IT.1) (vy)x = 0 whence vy =2 (T a constant) .
Similarly, the equation of motion {eq. (3.2} of Revort I)
vt+-vvx-+gyx~+g(sf -3) =0 yields

(1I.2) vV + gy, +8(%; -3} =0
Since from equation (IT.1) it follows that

% and V. = = =% yx ,
equation (71.2) becomes

2 e
(TT.3) (g-'%)yx**g( — T « 8 = U .
‘ 3
vy "’Yz("x‘»"\?j‘ '
13

.
4

'e note that equution {I1.3) has the simple solution

v = constant, for y satisfying




2 L/3
D- . 2
(IT.h) =Y (..12;) .

1+

This means that we can find a flow of uniform depth and
velocity having a given discharge BD (B is width of channel).
Conversely, by fixing the depth y we can find the cischarge
from (II.L) of the corresponding uniform flow.

For a channel with varying physical parameters such as
cross-section, friction term, etc. the steady flows protide
the well-known backwater curves. In general, we would find
noni-trivial steady solutions y = y(x) and v = v(x) for the
non-uniform channel. The explicit aetermination of the stapge
and discharge would be possible by numerical integration of
ordinary differential equations.

The analysls of the steady flow through the junction of
the Ohio and Mississippl Rivers was made for the conditions
described in section 3. “hat is, at 50 miles upsiream in the
Ohio the stage was held at 4O ft, while far unstream in the
Mississippl the stapge was kent at 20 feet. The latter
condition imnlies that the siope Y% sirould vanish unstream
in the Misslssipri, or that y and I = vy satisfy equation
(II.i). As before, let us use subscripts (1], (2], and [3]
to represent quantities evaluated in the Ohio, upstream
Mississippi and downstream i[lississippl respectively. The
conditions taat must be satisfied at the junction san bhe

simply written

(T1.5) lel = Y(ZJ = y[3] (= YJ an uiknown)

i S

(TI.6) Dfl] + 0[2) = 20{3] , for x =0 .

- o T e e i - o ] e e ————
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Equation (IT7.3) can now be incerrated in each of the three

river branches (from the junction point as origin).

y
(11.7) f
y

with

J

{ =

+-—t

We observe that y, as well as D[ and D[B] must be determinecd

1]
in order that (II.7) can be used. (D[2] as observed above is
known from the upstream condition in the Mississippi.)

The flow in the downstream Mississippi is easily seen*
to be uniform (i.e. depth y = - and velocity are constant)
and this means that equation {II.4) (with the use of (II.6))

holds in the form (if 3 = 100C ft.)

We schematically plot th. ¢ =Dy
integrand, I(y), of equation J7) = i
(II.7) (for given D and ' -
cther constants) in the i
region of zub-critical flow, !
that is, where gy is greater i

?

than v-, 'Je see from
Diagram 14 that

X = J‘ I(yidy : A
I3

will become positive infintite Niagranm 14
only if y = V; = value for-

which E = 0, (!'o other combination of finite values of y
and yy can produce a positive infinite value for x.)

—— e B ememtanat - heslls
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(D y /3
_J3 a_ﬁél —
» 1+ 5

Eduation (1I1.8) togeiher with equation (II.7) rewritten
for the 50 mile segment of the Ohio a3

e
a4

A D
Tyl r

v -

(II.9) 50 = \g Fe— dy  with ¥ ;) = igg mi
Iy

are a pair of simultaneous equations from wiich the values
of Y and D[li can be determined by an iterative procedure.

The results are for x = C,

V- j = Y2y = ¥pa) = ¥y = 3.2 fE.

i1y = L4.83 mph , Vi2y = 2.33 mph , Vigy = 3.18 mph

The cyrve - of stage versus distaiice were computed from

formula (II.7) and are drawn below.

J e T

Upstream Mississippi .~

B e Y
' i
!
5 . ' . e ey e . ]Aﬁ gy :.{ .
- 50 o] 50 100 miies
Diagram 15

Steady flow profile in neighborhood of
junction of the Ohlo and Miscissippi Rivers
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Yie have noted earlier that the transient solution of

our junction problem tends to the above drawn steady flow

as time increases.

B

-~

IT.2 Steady-progressiﬁg waves. For the case of the uniform

channel 1t is possible to find solutions in the form of ateady-

progressing waves, that is
y(x,t) = y(x ~Ut) , v(x,t) = v(x -Ut)

with U a constant speed of propagation.

In order to find a convenient representation of such
phenomena, we introduce a new coordinate system {z,t) by
setting

z2 =x-Ut , t=t\.

We note that z = constant ccrresponds to a motion with velocity

U in the (x,t) plane. The differential equations become
(IT1.10) Ve * (v -U)yz +yv, = 0

(II.11) vy * (v-U)v, + gy, + g(Sp-5) =0 .

The requirement that y and v be functions of z only,
means thsat Yy = Vg = O and as in the case of steady flow we

find that

(v -U)y =D (D a constant) and

(71.12)
2

(g-gg)yz + g(Sp=8) =0 .

S r— RN TS R he "o RO ISIRE B
e : - - -
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Equation (1T.12) can be integrated to yield

2
P (*’ 'P's) 7
(TI.13) z -2 = | ——:ig;—-dy = j' I(y)dy .
"y')'c y’)'f

The integfand I(y) for sub-critical flows will be typified
in the following sketich.

A , .
|
» ! / ! ! ‘v_\
! ;/ | N
/s i e
| e ‘ ,
H o ‘ !
i .
N U SRS e
-‘*‘ Tr -.—T o y
- e
i by |
é P '
' ' i
Diagram 16

We observe that there are two vertical asymptotes y = Vo173

between which I(y) 1s negative. This means that for the

7Ainfin1tely long river we can obtain a non-uniform steady-

progressing wave by letting b correspond to the depth at

X = -0 and Yo to the depth at x = +o0. If D and U are
prescribed, Yo and y, are uniquely determinéd and vice versa
if Yo and y, are prescribed then U and D are uniquely
determined. The latter viewpoint is easier to adopt, that
1s, we find by setting E = 0 for y = Yo and y = el

e T g S veme s ——— , . - ————— - o
P — —— RPN TR

..-4"
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2 of ¥ 4/3

(TI.1h)

2 2 I 4/3
1 +—B—-

Equations (II.1ll4) can easily be made linear to determine U
and D simply. 1In the case we ireated numerically ¥, = 4o ft,
¥, = 20 ft, we found that U = 5 mph.

Unfortunately, the steady-progressing waves do not exist
in rlivers, since the channels arenit uniform. Nevertheless,
the speed of propagation, U, is very close to the observed
speed of travel of flood waves. For this reason, some
theoretical Investigations are being made to establish the
relationship between provagation speeds of transient phenomena
and U. These results are needed to specify the accuracy of

long range forecasts of flood conditiocns.
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